
A Hybrid Simulated Annealing with Kempe Chain Neighborhood for the
University Timetabling Problem

Mauritsius Tuga, Regina Berretta and Alexandre Mendes
School of Electrical Engineering and Computer Science

The University of Newcastle, Callaghan, 2308, NSW, Australia
Moris@cs.newcastle.edu.au, {Regina.Berretta,Alexandre.Mendes}@newcastle.edu.au

Abstract

This paper addresses the problem of finding a feasi-
ble solution for the University Course Timetabling Problem
(UCTP), i.e. a solution that satisfies all the so-called hard
constraints. The problem is reformulated through relaxing
one of its hard constraints and then creating a soft con-
straint to address the relaxed constraint. The relaxed prob-
lem is solved in two steps. First, a graph-based heuristic
is used to construct a feasible solution of the relaxed prob-
lem, and then, a Simulated Annealing (SA)-based approach
is utilized to minimize the violation of the soft constraint. In
order to strengthen the diversification ability of the method
in the SA phase, a heuristic based on Kempe Chain neigh-
borhood is embedded into the standard approach. This
strategy is tested on a well-known data set, and the results
are very competitive compared to the current state of the art
of the UCTP.

1. Introduction

The University Course Timetabling Problem (UCTP) is
a well-known NP-Hard combinatorial problem. It is defined
as the assignment of a set of main academic events related
to a course, such as lectures, tutorials or lab sessions, to re-
sources (timeslots and rooms) subject to a set of constraints.
In general the set of constraints can be categorized as hard
and soft. Hard constraints are those that are compulsory
to be fulfilled. A timetable will not be acceptable if any
hard constraint is violated. Soft constraints include some
non-compulsory requirements. Even though they could be
violated there is a strong demand to minimize such viola-
tions. A timetable without any hard constraints violations
will be referred to as a feasible timetable. The quality of a
feasible timetable will be measured by the extension of its
soft constraints violations.

Requirements for a feasible timetable, as well as its soft

constraints, differ from one university to another, as each
university has different rules. However, there might be
some common requirements for a timetable to be consid-
ered feasible. They are for instance, no students, as well as
lecturers, are expected to attend two different events at one
particular time; a room should not be double-booked. A
quite comprehensive description of various types of those
requirements can be found in [3, 9].

Throughout this paper we will consider the hard con-
straints as described in the International Timetabling com-
petition [16]. They are:

1. H1: No student clash, i.e. no student is expected to
attend two different events at the same time slot;

2. H2: All events should be assigned to a room within
the given time slots, and the chosen room for an event
should meet the specifications required for that event;

3. H3: A room should not be double-booked.

The natural way and perhaps the simplest way of con-
structing a feasible solution is to assign each event one
by one to its suitable time slot and room until a complete
timetable is attained. There are three main concerns in the
timetabling construction process.

1. Choosing the order of the events to be assigned;

2. Choosing a time slot for the chosen event;

3. Choosing a suitable room for the chosen event.

Many articles relate the feasibility problem to the graph
coloring problem [5, 9]. In its basic formulation, a timetable
problem can be represented as a graph, where nodes repre-
sent events, and there is an edge between two nodes if and
only if those two events cannot be assigned to the same time
slot due to some constraint. This could happen, for exam-
ple, if there is at least one student enrolled in both events
or both events are given by the same lecturer. In addition,
there could also be an edge between two events, if there is
just one suitable room available for them. Thus, two events

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

are said to be in conflict if there is an edge between them.
Consequently, it is not surprising that constructive (or se-
quential) heuristics for graph coloring are found to be the
most common way to generate initial feasible solutions.

The main idea highlighted in the graph coloring heuris-
tics is that nodes or events are chosen sequentially based
on some criteria which reflect how difficult it will be to as-
sign an event. As pointed out by Burke [5], the measures
commonly used in this approach are Largest Degree first
(LD), Largest Weighted Degree first (LWD), Least Satura-
tion Degree first (LSD), Largest Color Degree first (LCD)
and Largest Enrollment first (LE).

In many cases, sequential methods are proven to be very
promising for generating the initial solutions [4, 5, 12].
However, using one or a combination of those sequential
heuristics still do not guarantee that a feasible solution will
be found [1, 2]. Thus, some further processing is required
to pursue them. Some authors incorporated some sequential
heuristics into the Constraint Programming (CP) approach
for the timetabling problem [8, 15, 20, 23]. Metaheuris-
tics are also reportedly used to reach feasibility, such as Ant
Colony [19], Tabu Search [7] and Genetic Algorithms [14].

There are authors who did not start their search through
a sequential construction process. Instead, the search pro-
cess begins with an infeasible timetable, where events are
assigned randomly. To reach feasibility, an appropriate cost
where the hard constraints violations are penalized, and
some metaheuristic techniques are utilized [18, 22].

To the best of our knowledge, there are only a few pa-
pers focusing on solely finding feasible solutions for UCTP.
All authors we mention above worked both on finding feasi-
ble solutions and minimising the soft constraints violations.
Kostuch [12] attempted to find feasible course timetables
from the International Timetable Competition instances us-
ing less than the number of timeslots provided. In some
instances he was successful, but failed in some others. Re-
cently, Lewis et al. [6, 14] posed a challenging university
timetable data set for which the goal is just to find feasible
solutions. Lewis pointed out that using graph-based sequen-
tial heuristics such as in [7] and [12] may fail to find any
feasible solution for many instances of this data set. Sub-
sequently they developed three methods mainly based on
grouping genetic algorithm, but were only partially success-
ful [6, 14].

In this paper we present an approach where the feasibil-
ity problem is reformulated by adding a soft constraint to
deal with the hard constraint. We utilize graph-based se-
quential heuristics to generate the initial solution without
hard constraint violation and a Simulated Annealing meta-
heuristic is used to reduce the number of soft constraints
violations. We tested this approach in the Lewis’ data set,
and the results will be compared to those reported in [6].

The paper is organized as follows: In Section II we

present the problem reformulation and some implementa-
tion issues. We describe our approach in tackling the prob-
lem in Section III followed by presenting our results in Sec-
tion IV. Finally, the conclusions are presented in Section V.

2. Problem Formulation

In this section, we introduce an approach in dealing with
the problem formulation, which forms the basis for our
method. We start by reconsidering the problem from the
graph theory point of view [9]. For each instance I , let
V = {v1, v2, · · ·, vn} be the set of events that have to be
scheduled on a weekly basis. Let G = (V, E) be a graph
whose vertices are the set of V , and {vi, vj} ∈ E(G) if
and only if events vi and vj are in conflict. The graph G is
called the conflict graph of I . A neighbourhood of an event
v denoted by N(v) is a set containing all events which are
in conflict with v. The degree of v is defined as |N(v)|.

Let also z(v) denote the number of students enrolled in
event v. If z(v) = 0 then the event v will be called a zero
event. The set of rooms is denoted by R, the set of times-
lots is denoted by W and let B = R × W be a cartesian
product over the set of rooms and the set of time slots in a
week. The set B will be referred to as resource set. In our
implementation, each member of B will be represented by a
unique integer, in such a way that it is easy to recover which
room and time slot a resource belongs to.

Every room has a number of features such as room ca-
pacity and the availability of teaching aids among others.
On the other hand, every event can only be assigned to a
room and timeslot which satisfy all features required by the
event. Therefore for each event vi, there is a specific set
Di ⊆ B, which contains all candidate resources that could
be used by event vi and in general, Di �= Dj , ∀i �= j. The
domain matrix D contains |V | rows and each row Di con-
tains the candidate resources for event vi.

A solution or a timetable is represented by a one-
dimensional array S where S(i) = b means event i is as-
signed to resource b. Let P1 be the problem of finding fea-
sible solutions of an instance I with regard to hard con-
straints H1, H2, and H3 described in Section I. Let P2 be
the problem derived from P1 where all the constraints are
still the same, except H2, which is partially relaxed, that is,
the events can be assigned to some extra timeslots. If we let
m be the given timeslots in P1 and m′ be the given timeslots
in P2, then we have m′ ≥ m. The number m′ will depend
on I . Any timeslot later than m will be referred to as artifi-
cial time slot. To accommodate the original requirement of
using just m timeslots, we introduce a soft constraint in P2,
which states that no event is to be assigned to an artificial
timeslot. To discourage the violation of this constraint the
objective function is utilized.

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

f(S) =
∑

v∈V1

z(v) (1)

where V1 denotes the set of events currently assigned to the
artificial timeslots.

A solution for P2 with no hard and soft constraints vio-
lations is equivalent to a feasible solution of P1. Therefore,
from now on unless otherwise stated, we will work on the
problem P2 and a feasible solution will only mean a solution
with no hard constraint violation according to the problem
P2.

Note that a feasible solution with zero cost in P2, gen-
erally implies that no event is placed in the artificial times-
lots. There might be cases that some instances contain zero
events. However, the zero events can be easily rescheduled
to a permitted timeslot if required without breaking any hard
constraint.

3. Simulated Annealing-based Heuristic

Simulated Annealing (SA) is a stochastic search method
based on the use of a local search. At any step, SA ei-
ther moves to a better neighbor solution if it finds one, or
to a worse solution with certain probability. It includes
some important elements concerning the probability of ac-
cepting a deteriorating solution which will be considered
later. SA was introduced by Kirkpatrick [11] in 1983, in-
spired by annealing process in physics. Many authors re-
portedly applied this strategy in solving timetabling prob-
lem [7, 12, 15, 18, 21, 22]. In addition, it turns out that the
winner of the 2002 International Timetabling Competition
utilized a SA-based approach to solve the instances [16].

In Fig. 1, we present a pseudo-code of the heuristic to
construct the initial solution (ISheuristic). Some sequen-
tial approaches were tested for the feasible initial solution
generation and the combination of LSD (Least Saturation
Degree) and LD (Largest Degree) seems to be the best com-
bination. The feasible solution found by ISheuristic will be
further processed by the SA-based method to minimise the
number of soft constraint violations, if necessary.

In Fig. 2, we show the pseudo-code of the Hybrid Simu-
lated Annealing (HSA) implemented in this work. Next, we
will describe the three neighborhood structures used in our
HSA algorithm.
1. Simple neighbourhood: This neighbourhood contains so-
lutions that can be obtained by simply changing the resource
of one event.
2. Swap neighbourhood: Under the simple neighbourhood,
an event is randomly chosen and a new resource is allocated
to it. However, this may involve some bias as there might
be events which do not have any valid resources left at one
stage of the search. This might create a disconnected search
space. In the swap neighbourhood, the resources of two

Input: Set of events V and set of candidate resources D
U ← V
While ((#trials < #trialsmax) and (U = V))

D
′ ← D

Sort the candidate resources of each event randomly
Sort events in U using LSD

Break the tie using (LD) if necessary
For i = 1 to |V |

Choose event vi

If (vi has no resource left)
U ← V ; D

′ ← D
#trials← #trials + 1

else
Choose the first resource for vi

Update D
′
; U ← U \ {vi}

Endif
Endfor

EndWhile

Figure 1. Pseudo-code of the ISHeuristic
used to create the initial solution.

events are exchanged, overcoming the disconnection of the
search space that might occur in the simple neighbourhood.
3. Kempe chain neighbourhood: A standard Kempe chain
neighbourhood operates over two selected timeslots and
was used by Burke et al. [4], Thompson et al. [22] and

Input: Incumbent solution S
For i = 0 to maxItSimAnnealing

initialize T and a
For j = 0 to a ∗ |V |

Choose an event vk at random
If (vk still has permitted resources)

Choose a candidate resource randomly
Calculate ∆Cost

If ((∆Cost ≤ 0) or (e(∆Cost/T) < rand[0, 1]))
Accept the move
Update matrix D
Update incumbent solution S

Endif
Else Find potential event vs for swapping

Calculate ∆Cost

If ((∆Cost ≤ 0) or (e(∆Cost/T) < rand[0, 1]))
Accept the move
Update matrix D
Update incumbent solution S

Endif
Endif

Endfor
If ((No improvement for itermax iterations)

and (time limit not reached))
KCHeuristic(S)
Adjust the temperature T

Endif
Endfor

Figure 2. Pseudo-code of the HSA algorithm.

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

v1,b1

v2,b2

v3,b3

v4,b4

v5,b5

v6,b6

v7,b7

 t1

v8,b8

v9,b9

v10,b10

v11,b11

v12,b12

v13,b13

v14,b14

 t2

v8,b1

v9,b2

v3,b3

v4,b4

v12,b5

v6,b6

v7,b7

 t1

v1,b8

v2,b9

v10,b10

v11,b11

v5,b12

v13,b13

v14,b14

 t2 (a) (b)

Figure 3. Bipartite graphs induced by the re-
sources and events in timeslots t1 and t2 be-
fore (a) and after (b) the Kempe Chain move.

Merlot et al. [15] to tackle examination timetabling prob-
lems. It swaps the timeslot of a subset of events in such a
way that the feasibility is maintained. As our concern is in
the course timetabling problem, we develop a quite different
version of Kempe chain than those used in [4, 15, 22]. This
version will be referred to as Pair-wise Kempe Chain (PKC)
which is basically a class of neighbourhood structures con-
taining those what we call k-pair Kempe Chain where k is
a positive integer, representing the number of timeslot pairs
involved. For k = 1 for example, a 1-pair Kempe Chain
neighborhood can be obtained by initially choosing a pair
of time slots randomly. Then, we create a Kempe Chain
based on the chosen timeslots, swapping the timeslots of
all events in the chain. To illustrate the idea, consider two
time slots, say t1 and t2 of a timetable S. A bipartite graph
can be induced by considering the resources used within
those two timeslots as vertices, and an edge between them
if and only if the two resources are used by two conflict-
ing events or they share the same room. In the Figure 3(a),
we assume events v1, v2, ..., v7 are currently assigned to re-
sources b1, b2, ..., b7 in timeslot t1, and events v8, v9, ..., v14

are currently assigned to resources b8, b9, ..., b14 in timeslot
t2. The edge between (v5, b5) in timeslot t1 and (v9, b9) in
timeslot t2 indicates that the events v5 and v9 are in conflict.
A Kempe chain can be formed by choosing one resource
randomly from timeslot t1; and the corresponding event will
trigger a chain which is basically a connected subgraph. If,
for instance, the resource b2 of timeslot t1 is chosen then a
chain will be created triggered by event v2, that will contain
the events {v1, v8, v2, v9, v5, v12}. A new timetable S′ can
be obtained by reassigning each event in this chain to their
pair’s timeslot in the same room (Fig.1(b)). In Fig. 4, we
show the pseudo-code for the Kempe Chain based heuristic,
which is called from the HSA (see Fig. 2).

The probability used in SA is defined by using a param-
eter called temperature. The higher the temperature, the
higher is the probability of accepting a worse solution. As
the search progresses, the probability of accepting a worse
solution decreases. A cooling schedule in SA is a general
term used to manage the temperature during the SA process.
It includes the choice of the initial temperature, the rate of
decrease of the temperature and the number of trials in one
temperature level. The whole SA process is proven to be
very sensitive to the choice of cooling schedule. Despite
many authors have investigated this aspect [10, 21, 22] it
turned out that none of their recommendations was suitable
for our problem at hand. We then had to carry out some
preliminary tests to tune in our cooling schedule:

1. Initial temperature: The initial temperature is chosen
such that the probability of accepting a worse solution is
sufficiently high (±40%);
2. Cooling equation: We tested many cooling equations
and found out that the best one is similar to the one used by
Kostuch [12], i.e T = 1/((1/T) + β) where β is chosen
between 0.001 and 0.0005;
3. Number of trials: The number of trials in each tempera-
ture level is set to a.|V | where a is linearly increased. Ini-
tially, a is initially set to 10.

In order to save CPU time, some problem specific knowl-
edge are incorporated into the search process. For instance,
the cost calculation is done using delta evaluation (∆Cost)
[17]. Therefore, given a new solution, its cost is not calcu-
lated from scratch. Instead, it incorporates some unchanged
cost components from its predecessor. In addition, moving
an event using simple neighborhood from an artificial times-

Input: Incumbent Solution S
For i = 0 to maxIterKempe

Randomly chose k numbers of pairs
Mark all timeslots as unvisited
U ← ∅
For j = 0 to k

Choose two unvisited timeslots t1 and t2
Choose a trigger event in t1
Build a Kempe chain
Let Uj denote the set of moving events
U ← U

⋃
Uj

Mark the two timeslots as visited
Endfor
Move each event in U to their pair timeslot
Calculate ∆Cost

If (∆Cost ≤ 0)
Accept the move
Update incumbent solution S

Endif
If (no improvement for itermax iterations)

Return incumbent solution S
Endif

Endfor

Figure 4. Pseudo-code of the KCHeuristic.

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

lot to another artificial timeslot will not change the cost.
This also applies to swapping two events in the same artifi-
cial timeslot and to the Kempe chain neighbourhood.

4. Computational Results and Analysis

We tested our heuristics on 60 instances posed by Lewis
et al. in [6]. These instances were created using an instance
generator and they are difficult to solve using some sequen-
tial heuristics. Even though, there is at least one feasible
solution for each of them. The instances are divided into
3 categories: small, medium and large. For the small in-
stances, 200 ≤ |V | ≤ 225 and |R| = 5 or 6; for the medium
instances 390 ≤ |V | ≤ 425 and |R| = 10 or 11; and for the
large instances 1000 ≤ |V | ≤ 1075 and |R| = 25 to 28.
All events of all instances must be assigned within m = 45
timeslots. Additional parameters and other details on the
instances can be found in [6].

ISHeuristic is used to generate the initial solution for
the relaxed problem. The maximum number of trials is
set at 500, which takes about 5 seconds of CPU time to
be completed. ISHeuristic successfully generates initial
solutions for 13 instances from Lewis data set in just few
seconds using the 45 time slots available. The rest of the
instances are more difficult and it was necessary to add ar-
tificial timeslots. A preliminary test were carried out for
these instances in order to find out their minimum number
of artificial timeslots. Having found this number, we per-
formed some experiments in order to minimize the cost of
the objective function (1) using the HSAHeuristic.

We carried out 20 runs per instance with distinct random
seeds on a PC Pentium IV 3.2 GHz running under Linux.
Basically we terminated our algorithm if no improvement
was found within a fixed number of iterations. In addition,
we set time limits of 200, 400 and 1,000 seconds for small,
medium and large instances, respectively.

Table 1 presents the best results found by our SA al-
gorithm (HSA) compared to those found by Lewis for the
small, medium and large instances. Lewis I are results ob-
tained by the method as described in [14]. Lewis I, Lewis
II and Lewis III results can be found in [6]. It is important
to emphasize that we still do not have access to the details
of Lewis’ methods Lewis II and Lewis III, as they have not
been published yet [13]. The four methods have compa-
rable performances in the small problems, with a similar
number of feasible solutions found. For the medium in-
stances, the HSA obtains superior results, improving those
from the three Lewis methods. Finally, in the large instances
the HSA algorithm shows a performance improvement in
comparison with the others. It found twice as many feasible
solutions than the best Lewis method. Also worth mention-
ing is the number of times that the HSA found feasible so-
lutions, which shows an intrinsic robustness of the method.

Table 1. Comparison of the HSA and the
Lewis I, II and III methods for the small,
medium and large instances.

Small instances
Instance HSA Lewis I Lewis II Lewis III
name min ave CPU(s)
s1 0(20) 0 0 0 0 0
s2 0(20) 0 0 0 0 0
s3 0(20) 0 9 0 0 0
s4 0(20) 0 0 0 0 0
s5 0(20) 0 5 5 0 0
s6 0(20) 0 0 0 0 0
s7 0(20) 0 0 0 0 0
s8 0(1) 1.9 79 12 4 0
s9 0(2) 3.85 84 4 0 0
s10 0(20) 0 15 0 0 0
s11 0(20) 0 0 0 0 0
s12 0(20) 0 0 0 0 0
s13 0(9) 1 15 0 0 0
s14 3(1) 5.95 136 17 3 0
s15 0(20) 0 0 0 0 0
s16 0(20) 0 13 0 0 0
s17 0(20) 0 13 0 0 0
s18 0(11) 0.45 36 3 0 0
s19 0(11) 1.2 25 3 0 0
s20 0(20) 0 0 0 0 0
Total 19 14 18 20

Medium instances
Instance HSA Lewis I Lewis II Lewis III
name min ave CPU(s)
m1 0(20) 0 0 0 0 0
m2 0(20) 0 0 0 0 0
m3 0(20) 0 8 0 0 0
m4 0(20) 0 3 0 0 0
m5 0(20) 0 85 8 0 0
m6 0(20) 0 20 15 0 0
m7 1(1) 4.15 440 41 34 14
m8 0(20) 0 12 21 9 0
m9 0(1) 4.9 269 30 17 2
m10 0(20) 0 0 0 0 0
m11 0(20) 0 25 12 0 0
m12 0(20) 0 54 0 0 0
m13 0(12) 0.5 172 23 3 0
m14 0(20) 0 59 0 0 0
m15 0(19) 0.05 72 10 0 0
m16 1(2) 5.15 733 50 30 1
m17 0(20) 0 39 21 0 0
m18 0(2) 6.05 429 15 0 0
m19 0(3) 5.45 511 51 0 0
m20 2(1) 10.6 457 15 0 3
Total 17 7 15 16

Large instances
Instance HSA Lewis I Lewis II Lewis III
name min ave CPU(s)
b1 0(20) 0 0 0 0 0
b2 0(20) 0 283 0 0 0
b3 0(20) 0 447 0 0 0
b4 0(20) 0 406 32 30 8
b5 0(6) 1.1 743 31 24 30
b6 5(1) 8.45 893 90 71 77
b7 47(1) 58.3 966 150 145 150
b8 0(20) 0 210 35 30 5
b9 0(19) 0.05 419 26 18 3
b10 0(6) 1.25 660 36 32 24
b11 0(14) 0.35 444 43 37 22
b12 0(20) 0 240 4 0 0
b13 0(20) 0 274 23 10 0
b14 0(20) 0 271 8 0 0
b15 0(20) 0 255 120 98 0
b16 0(2) 2 755 120 100 19
b17 76(1) 89.9 998 260 243 163
b18 53(1) 62.6 764 199 173 164
b19 109(1) 127 998 262 253 232
b20 40(1) 46.7 827 186 165 149
Total 14 3 5 7
The results represent the number of events in the artificial timeslots
The number of times (out of 20 trials) that the HSA found the optimal solution
is shown in subscript under the min column.

Also important to emphasize is that a zero cost found in
zero seconds means that our initial solution generator could
already find the feasible solution for the instance by using
just 45 timeslots.

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

5. Conclusion

This paper presented a new Hybrid Simulated Anneal-
ing (HSA) for the University Course Timetabling Problem
(UCTP). The method relaxes the hard constraint associated
to the number of timeslots in the original problem and uses
a penalty function to minimize the use of slots and reach
a feasible solution. The method uses an improved Kempe
Chain neighbourhood that allows a better diversification in
the search for a feasible solution. Three sets of instances
were used, divided according to their sizes. The HSA per-
formance was compared against three different algorithms
from Lewis et al. [6, 14], which are the current state of
the art for the problem. The results indicate a comparable
performance for the set of smaller instances; slightly better
results for the medium-sized instances; and strongly better
for the larger instances. Also worth mentioning is the ro-
bustness showed by the HSA, with the method repeatedly
finding feasible solutions in the majority of the trials.

References

[1] S. Abdullah, E. Burke, and B. McCollum. An investiga-
tion of variable neighbourhood search for university course
timetabling. In Proceedings of MISTA2005: The 2nd Multi-
disciplinary Conference on Scheduling: Theory and Appli-
cations, pages 413–427, New York, USA, 2005.

[2] S. Abdullah, E. Burke, and B. McCollum. A randomised
iterative improvement algorithm with composite neighbour-
hood structures for university course timetabling. In Pro-
ceedings of MIC05: The 6th Metaheuristic International
Conference, Vienna, Austria, 2005.

[3] V. Bardadym. Computer-aided school and university
timetabling: The new wave. In E. Burke and P. Ross, editors,
Proceedings of PATAT’95, volume 1153 of Lecture Notes
in Computer Science, pages 22–45. Springer-Verlag, Berlin,
1995.

[4] E. Burke, A. Eckersley, B. McCollum, S. Petrovic, and
R. Qu. Hybrid variable neighbourhood approaches to uni-
versity exam timetabling. Technical Report NOTTCS-TR-
2006-2, University of Nottingham, School of CSiT, 2006.

[5] E. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu.
A graph-based hyper-heuristic for educational timetabling
problems. European Journal of Operational Research,
176:177–192, 2007.

[6] Centre of Emergent Computing. http://www.emergentcom
puting.org/timetabling/harderinstances.htm, 2007.

[7] M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-
Doria. An effective hybrid approach for the university
course timetabling problem. Technical Report AIDA-03-05,
TU Darmstadt, FG Intellektik, 2003.

[8] S. Deris, S. Omatu, and H. Ohta. Timetabling planning using
the constraint-based reasoning. Computers & Operations
Research, 27:819–840, 2000.

[9] J. K. E.K. Burke and D. de Werra. Applications to
timetabling. In J. Gross and J. Yellen, editors, Handbook of

Graph Theory, pages 445–474. Chapman Hall/CRC Press,
2004.

[10] M. Elmohamed, P. Coddington, and G. Fox. A comparison
of annealing techniques for academic course scheduling. In
E. Burke and M. Carter, editors, Proceedings of PATAT’97,
volume 1408 of Lecture Notes in Computer Science, pages
92–114. Springer-Verlag, Berlin, 1997.

[11] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
simulated annealing. Science, 4598:671–680, 1983.

[12] P. Kostuch. The university course timetabling problem with
a three-phase approach. In E. Burke and M. Trick, ed-
itors, Proceedings of PATAT 2004, volume 3616 of Lec-
ture Notes in Computer Science, pages 109–125. Springer-
Verlag, Berlin, 2004.

[13] R. Lewis and B. Paechter. Finding feasible timetables using
group based operators. IEEE Transactions on Evolutionary
Computation, to appear.

[14] R. Lewis and B. Paechter. Application of the grouping ge-
netic algorithm to university course timetabling. In G. Raidl
and J. Gottlieb, editors, Proceedings of EvoCOP 2005, vol-
ume 3448 of Lecture Notes in Computer Science, pages 144–
153. Springer-Verlag, Berlin, 2005.

[15] L. Merlot, N. Boland, B. Hughes, and P. Stuckey. A hy-
brid algorithm for the examination timetabling problem. In
E. Burke and P. De Causmaecker, editors, Proceedings of
PATAT 2002, volume 2740 of Lecture Notes in Computer
Science, pages 207–231. Springer-Verlag, Berlin, 2002.

[16] Metaheuristic Network. http://www.idsia.ch/files/
ttcomp2002, 2007.

[17] P. Ross, D. Corne, and H. Fang. Improving evolutionary
timetabling with delta evaluation and direct mutation. Lec-
ture Notes in Computer Science, 866:556–565, 1994.

[18] O. Rossi-Doria et al. A comparison of the performance
of different metaheuristics on the timetabling problem. In
E. Burke and P. De Causmaecker, editors, Proceedings of
PATAT 2002, volume 2740 of Lecture Notes in Computer
Science, pages 329–351. Springer-Verlag, Berlin, 2002.

[19] K. Socha, J. Knowles, and M. Sampels. A max-min ant
system for the university course timetabling problem. In
M. Dorigo et al., editor, Proceedings of ANTS 2002, volume
2463 of Lecture Notes in Computer Science, pages 1–13.
Springer-Verlag, Berlin, 2002.

[20] V. Tam and D. Ting. Combining the min-conflicts and look-
forward heuristics to effectively solve a set of hard univer-
sity timetabling problems. In Proceedings of ICTAI’03: The
15th IEEE International Conference on Tools with Artificial
Intelligence, page 492, Sacramento, USA, 2003.

[21] J. Thompson and K. Dowsland. General colling schedules
for a simulated annealing based timetabling system. In
E. Burke and P. Ross, editors, Proceedings of PATAT’95,
volume 1153 of Lecture Notes in Computer Science, pages
345–363. Springer-Verlag, Berlin, 1995.

[22] J. Thompson and K. Dowsland. A robust simulated anneal-
ing based examination timetabling system. Computers &
Operations Research, 25:637–648, 1998.

[23] G. White and J. Zhang. Generating complete univer-
sity timetables by combining tabu search with constraint
logic. In E. Burke and M. Carter, editors, Proceedings of
PATAT’97, volume 1408 of Lecture Notes in Computer Sci-
ence, pages 187–200. Springer-Verlag, Berlin, 1997.

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00 © 2007

