A Hybrid Simulated Annealing with Kempe Chain Neighborhood for the University Timetabling Problem

Mauritsius Tuga, Regina Berretta and Alexandre Mendes
School of Electrical Engineering and Computer Science
The University of Newcastle, Callaghan, 2308, NSW, Australia
Moris@cs.newcastle.edu.au, \{Regina.Berretta,Alexandre.Mendes\}@newcastle.edu.au

Abstract

This paper addresses the problem of finding a feasible solution for the University Course Timetabling Problem (UCTP), i.e. a solution that satisfies all the so-called hard constraints. The problem is reformulated through relaxing one of its hard constraints and then creating a soft constraint to address the relaxed constraint. The relaxed problem is solved in two steps. First, a graph-based heuristic is used to construct a feasible solution of the relaxed problem, and then, a Simulated Annealing (SA)-based approach is utilized to minimize the violation of the soft constraint. In order to strengthen the diversification ability of the method in the SA phase, a heuristic based on Kempe Chain neighborhood is embedded into the standard approach. This strategy is tested on a well-known data set, and the results are very competitive compared to the current state of the art of the UCTP.

1. Introduction

The University Course Timetabling Problem (UCTP) is a well-known NP-Hard combinatorial problem. It is defined as the assignment of a set of main academic events related to a course, such as lectures, tutorials or lab sessions, to resources (timeslots and rooms) subject to a set of constraints. In general the set of constraints can be categorized as hard and soft. Hard constraints are those that are compulsory to be fulfilled. A timetable will not be acceptable if any hard constraint is violated. Soft constraints include some non-compulsory requirements. Even though they could be violated there is a strong demand to minimize such violations. A timetable without any hard constraints violations will be referred to as a feasible timetable. The quality of a feasible timetable will be measured by the extension of its soft constraints violations.

Requirements for a feasible timetable, as well as its soft
constraints, differ from one university to another, as each university has different rules. However, there might be some common requirements for a timetable to be considered feasible. They are for instance, no students, as well as lecturers, are expected to attend two different events at one particular time; a room should not be double-booked. A quite comprehensive description of various types of those requirements can be found in $[3,9]$.

Throughout this paper we will consider the hard constraints as described in the International Timetabling competition [16]. They are:

1. H1: No student clash, i.e. no student is expected to attend two different events at the same time slot;
2. H 2 : All events should be assigned to a room within the given time slots, and the chosen room for an event should meet the specifications required for that event;
3. H3: A room should not be double-booked.

The natural way and perhaps the simplest way of constructing a feasible solution is to assign each event one by one to its suitable time slot and room until a complete timetable is attained. There are three main concerns in the timetabling construction process.

1. Choosing the order of the events to be assigned;
2. Choosing a time slot for the chosen event;
3. Choosing a suitable room for the chosen event.

Many articles relate the feasibility problem to the graph coloring problem [5,9]. In its basic formulation, a timetable problem can be represented as a graph, where nodes represent events, and there is an edge between two nodes if and only if those two events cannot be assigned to the same time slot due to some constraint. This could happen, for example, if there is at least one student enrolled in both events or both events are given by the same lecturer. In addition, there could also be an edge between two events, if there is just one suitable room available for them. Thus, two events
are said to be in conflict if there is an edge between them. Consequently, it is not surprising that constructive (or sequential) heuristics for graph coloring are found to be the most common way to generate initial feasible solutions.

The main idea highlighted in the graph coloring heuristics is that nodes or events are chosen sequentially based on some criteria which reflect how difficult it will be to assign an event. As pointed out by Burke [5], the measures commonly used in this approach are Largest Degree first (LD), Largest Weighted Degree first (LWD), Least Saturation Degree first (LSD), Largest Color Degree first (LCD) and Largest Enrollment first (LE).

In many cases, sequential methods are proven to be very promising for generating the initial solutions [4, 5, 12]. However, using one or a combination of those sequential heuristics still do not guarantee that a feasible solution will be found $[1,2]$. Thus, some further processing is required to pursue them. Some authors incorporated some sequential heuristics into the Constraint Programming (CP) approach for the timetabling problem [8, 15, 20, 23]. Metaheuristics are also reportedly used to reach feasibility, such as Ant Colony [19], Tabu Search [7] and Genetic Algorithms [14].

There are authors who did not start their search through a sequential construction process. Instead, the search process begins with an infeasible timetable, where events are assigned randomly. To reach feasibility, an appropriate cost where the hard constraints violations are penalized, and some metaheuristic techniques are utilized [18, 22].

To the best of our knowledge, there are only a few papers focusing on solely finding feasible solutions for UCTP. All authors we mention above worked both on finding feasible solutions and minimising the soft constraints violations. Kostuch [12] attempted to find feasible course timetables from the International Timetable Competition instances using less than the number of timeslots provided. In some instances he was successful, but failed in some others. Recently, Lewis et al. [6, 14] posed a challenging university timetable data set for which the goal is just to find feasible solutions. Lewis pointed out that using graph-based sequential heuristics such as in [7] and [12] may fail to find any feasible solution for many instances of this data set. Subsequently they developed three methods mainly based on grouping genetic algorithm, but were only partially successful [6, 14].

In this paper we present an approach where the feasibility problem is reformulated by adding a soft constraint to deal with the hard constraint. We utilize graph-based sequential heuristics to generate the initial solution without hard constraint violation and a Simulated Annealing metaheuristic is used to reduce the number of soft constraints violations. We tested this approach in the Lewis' data set, and the results will be compared to those reported in [6].

The paper is organized as follows: In Section II we
present the problem reformulation and some implementation issues. We describe our approach in tackling the problem in Section III followed by presenting our results in Section IV. Finally, the conclusions are presented in Section V.

2. Problem Formulation

In this section, we introduce an approach in dealing with the problem formulation, which forms the basis for our method. We start by reconsidering the problem from the graph theory point of view [9]. For each instance I, let $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be the set of events that have to be scheduled on a weekly basis. Let $G=(V, E)$ be a graph whose vertices are the set of V, and $\left\{v_{i}, v_{j}\right\} \in E(G)$ if and only if events v_{i} and v_{j} are in conflict. The graph G is called the conflict graph of I. A neighbourhood of an event v denoted by $N(v)$ is a set containing all events which are in conflict with v. The degree of v is defined as $|N(v)|$.

Let also $z(v)$ denote the number of students enrolled in event v. If $z(v)=0$ then the event v will be called a zero event. The set of rooms is denoted by R, the set of timeslots is denoted by W and let $B=R \times W$ be a cartesian product over the set of rooms and the set of time slots in a week. The set B will be referred to as resource set. In our implementation, each member of B will be represented by a unique integer, in such a way that it is easy to recover which room and time slot a resource belongs to.

Every room has a number of features such as room capacity and the availability of teaching aids among others. On the other hand, every event can only be assigned to a room and timeslot which satisfy all features required by the event. Therefore for each event v_{i}, there is a specific set $D_{i} \subseteq B$, which contains all candidate resources that could be used by event v_{i} and in general, $D_{i} \neq D_{j}, \forall i \neq j$. The domain matrix D contains $|V|$ rows and each row D_{i} contains the candidate resources for event v_{i}.

A solution or a timetable is represented by a onedimensional array S where $S(i)=b$ means event i is assigned to resource b. Let P_{1} be the problem of finding feasible solutions of an instance I with regard to hard constraints H1, H2, and H3 described in Section I. Let P_{2} be the problem derived from P_{1} where all the constraints are still the same, except H 2 , which is partially relaxed, that is, the events can be assigned to some extra timeslots. If we let m be the given timeslots in P_{1} and m^{\prime} be the given timeslots in P_{2}, then we have $m^{\prime} \geq m$. The number m^{\prime} will depend on I. Any timeslot later than m will be referred to as artificial time slot. To accommodate the original requirement of using just m timeslots, we introduce a soft constraint in P_{2}, which states that no event is to be assigned to an artificial timeslot. To discourage the violation of this constraint the objective function is utilized.

$$
\begin{equation*}
f(S)=\sum_{v \in V_{1}} z(v) \tag{1}
\end{equation*}
$$

where V_{1} denotes the set of events currently assigned to the artificial timeslots.

A solution for P_{2} with no hard and soft constraints violations is equivalent to a feasible solution of P_{1}. Therefore, from now on unless otherwise stated, we will work on the problem P_{2} and a feasible solution will only mean a solution with no hard constraint violation according to the problem P_{2}.

Note that a feasible solution with zero cost in P_{2}, generally implies that no event is placed in the artificial timeslots. There might be cases that some instances contain zero events. However, the zero events can be easily rescheduled to a permitted timeslot if required without breaking any hard constraint.

3. Simulated Annealing-based Heuristic

Simulated Annealing (SA) is a stochastic search method based on the use of a local search. At any step, SA either moves to a better neighbor solution if it finds one, or to a worse solution with certain probability. It includes some important elements concerning the probability of accepting a deteriorating solution which will be considered later. SA was introduced by Kirkpatrick [11] in 1983, inspired by annealing process in physics. Many authors reportedly applied this strategy in solving timetabling problem $[7,12,15,18,21,22]$. In addition, it turns out that the winner of the 2002 International Timetabling Competition utilized a SA-based approach to solve the instances [16].

In Fig. 1, we present a pseudo-code of the heuristic to construct the initial solution (ISheuristic). Some sequential approaches were tested for the feasible initial solution generation and the combination of LSD (Least Saturation Degree) and LD (Largest Degree) seems to be the best combination. The feasible solution found by ISheuristic will be further processed by the SA-based method to minimise the number of soft constraint violations, if necessary.

In Fig. 2, we show the pseudo-code of the Hybrid Simulated Annealing (HSA) implemented in this work. Next, we will describe the three neighborhood structures used in our HSA algorithm.

1. Simple neighbourhood: This neighbourhood contains solutions that can be obtained by simply changing the resource of one event.
2. Swap neighbourhood: Under the simple neighbourhood, an event is randomly chosen and a new resource is allocated to it. However, this may involve some bias as there might be events which do not have any valid resources left at one stage of the search. This might create a disconnected search space. In the swap neighbourhood, the resources of two
```
Input: Set of events \(V\) and set of candidate resources \(D\)
\(U \leftarrow V\)
While \(\left(\left(\#\right.\right.\) trials \(<\#\) trials \(\left._{\text {max }}\right)\) and \(\left.(U=V)\right)\)
    \(D^{\prime} \leftarrow D\)
    Sort the candidate resources of each event randomly
    Sort events in \(U\) using LSD
        Break the tie using (LD) if necessary
    For \(i=1\) to \(|V|\)
        Choose event \(v_{i}\)
        If \(\left(v_{i}\right.\) has no resource left)
            \(U \leftarrow V ; D^{\prime} \leftarrow D\)
            \(\#\) trials \(\leftarrow \#\) trials +1
        else
            Choose the first resource for \(v_{i}\)
            Update \(D^{\prime} ; U \leftarrow U \backslash\left\{v_{i}\right\}\)
        Endif
    Endfor
EndWhile
```

Figure 1. Pseudo-code of the ISHeuristic used to create the initial solution.
events are exchanged, overcoming the disconnection of the search space that might occur in the simple neighbourhood. 3. Kempe chain neighbourhood: A standard Kempe chain neighbourhood operates over two selected timeslots and was used by Burke et al. [4], Thompson et al. [22] and

```
Input: Incumbent solution \(S\)
For \(i=0\) to maxItSimAnnealing
    initialize \(T\) and \(a\)
    For \(j=0\) to \(a *|V|\)
            Choose an event \(v_{k}\) at random
            If ( \(v_{k}\) still has permitted resources)
                    Choose a candidate resource randomly
                    Calculate \(\Delta_{\text {Cost }}\)
If \(\left(\left(\Delta_{\text {Cost }} \leq 0\right)\right.\) or \(\left.\left(e^{\left(\Delta_{\text {Cost }} / T\right)}<\operatorname{rand}[0,1]\right)\right)\)
                        Accept the move
                    Update matrix \(D\)
                    Update incumbent solution \(S\)
                    Endif
            Else Find potential event \(v_{s}\) for swapping
                    Calculate \(\Delta_{\text {Cost }}\)
                    If \(\left(\left(\Delta_{\text {Cost }} \leq 0\right)\right.\) or \(\left.\left(e^{\left(\Delta_{\text {Cost }} / T\right)}<\operatorname{rand}[0,1]\right)\right)\)
                    Accept the move
                    Update matrix \(D\)
                    Update incumbent solution \(S\)
                    Endif
            Endif
    Endfor
    If ((No improvement for iter \(_{\text {max }}\) iterations)
        and (time limit not reached))
            KCHeuristic(S)
            Adjust the temperature \(T\)
        Endif
Endfor
```

Figure 2. Pseudo-code of the HSA algorithm.

The probability used in SA is defined by using a parameter called temperature. The higher the temperature, the higher is the probability of accepting a worse solution. As the search progresses, the probability of accepting a worse solution decreases. A cooling schedule in SA is a general term used to manage the temperature during the SA process. It includes the choice of the initial temperature, the rate of decrease of the temperature and the number of trials in one temperature level. The whole SA process is proven to be very sensitive to the choice of cooling schedule. Despite many authors have investigated this aspect [10, 21, 22] it turned out that none of their recommendations was suitable for our problem at hand. We then had to carry out some preliminary tests to tune in our cooling schedule:

1. Initial temperature: The initial temperature is chosen such that the probability of accepting a worse solution is sufficiently high ($\pm 40 \%$);
2. Cooling equation: We tested many cooling equations and found out that the best one is similar to the one used by Kostuch [12], i.e $T=1 /((1 / T)+\beta)$ where β is chosen between 0.001 and 0.0005 ;
3. Number of trials: The number of trials in each temperature level is set to $a .|V|$ where a is linearly increased. Initially, a is initially set to 10 .

In order to save CPU time, some problem specific knowledge are incorporated into the search process. For instance, the cost calculation is done using delta evaluation ($\Delta_{\text {Cost }}$) [17]. Therefore, given a new solution, its cost is not calculated from scratch. Instead, it incorporates some unchanged cost components from its predecessor. In addition, moving an event using simple neighborhood from an artificial times-

```
Input: Incumbent Solution \(S\)
For \(i=0\) to maxIter Kempe
        Randomly chose \(k\) numbers of pairs
        Mark all timeslots as unvisited
        \(U \leftarrow \emptyset\)
        For \(j=0\) to \(k\)
            Choose two unvisited timeslots \(t_{1}\) and \(t_{2}\)
            Choose a trigger event in \(t_{1}\)
            Build a Kempe chain
            Let \(U_{j}\) denote the set of moving events
            \(U \leftarrow U \bigcup U_{j}\)
            Mark the two timeslots as visited
        Endfor
        Move each event in \(U\) to their pair timeslot
        Calculate \(\Delta_{\text {Cost }}\)
        If \(\left(\Delta_{\text {Cost }} \leq 0\right)\)
            Accept the move
            Update incumbent solution \(S\)
        Endif
        If (no improvement for iter \(_{\text {max }}\) iterations)
            Return incumbent solution \(S\)
        Endif
Endfor
```

Figure 4. Pseudo-code of the KCHeuristic.
lot to another artificial timeslot will not change the cost. This also applies to swapping two events in the same artificial timeslot and to the Kempe chain neighbourhood.

4. Computational Results and Analysis

We tested our heuristics on 60 instances posed by Lewis et al. in [6]. These instances were created using an instance generator and they are difficult to solve using some sequential heuristics. Even though, there is at least one feasible solution for each of them. The instances are divided into 3 categories: small, medium and large. For the small instances, $200 \leq|V| \leq 225$ and $|R|=5$ or 6 ; for the medium instances $390 \leq|V| \leq 425$ and $|R|=10$ or 11 ; and for the large instances $1000 \leq|V| \leq 1075$ and $|R|=25$ to 28 . All events of all instances must be assigned within $m=45$ timeslots. Additional parameters and other details on the instances can be found in [6].

ISHeuristic is used to generate the initial solution for the relaxed problem. The maximum number of trials is set at 500 , which takes about 5 seconds of CPU time to be completed. ISHeuristic successfully generates initial solutions for 13 instances from Lewis data set in just few seconds using the 45 time slots available. The rest of the instances are more difficult and it was necessary to add artificial timeslots. A preliminary test were carried out for these instances in order to find out their minimum number of artificial timeslots. Having found this number, we performed some experiments in order to minimize the cost of the objective function (1) using the HSAHeuristic.

We carried out 20 runs per instance with distinct random seeds on a PC Pentium IV 3.2 GHz running under Linux. Basically we terminated our algorithm if no improvement was found within a fixed number of iterations. In addition, we set time limits of 200, 400 and 1,000 seconds for small, medium and large instances, respectively.

Table 1 presents the best results found by our SA algorithm (HSA) compared to those found by Lewis for the small, medium and large instances. Lewis I are results obtained by the method as described in [14]. Lewis I, Lewis II and Lewis III results can be found in [6]. It is important to emphasize that we still do not have access to the details of Lewis' methods Lewis II and Lewis III, as they have not been published yet [13]. The four methods have comparable performances in the small problems, with a similar number of feasible solutions found. For the medium instances, the HSA obtains superior results, improving those from the three Lewis methods. Finally, in the large instances the HSA algorithm shows a performance improvement in comparison with the others. It found twice as many feasible solutions than the best Lewis method. Also worth mentioning is the number of times that the HSA found feasible solutions, which shows an intrinsic robustness of the method.

Table 1. Comparison of the HSA and the Lewis I, II and III methods for the small, medium and large instances.

Small instances						
Instance name	min	HSA ave	CPU(s)	Lewis I	Lewis II	Lewis III
s_{1}	$0_{(20)}$	0	0	0	0	0
s_{2}	$0_{(20)}$	0	0	0	0	0
s_{3}	$0_{(20)}$	0	9	0	0	0
s_{4}	$0_{(20)}$	0	0	0	0	0
s_{5}	$0_{(20)}$	0	5	5	0	0
s_{6}	$0_{(20)}$	0	0	0	0	0
s_{7}	$0_{(20)}$	0	0	0	0	0
s_{8}	$0_{(1)}$	1.9	79	12	4	0
s_{9}	$0_{(2)}$	3.85	84	4	0	0
s_{10}	$0_{(20)}$	0	15	0	0	0
s_{11}	$0_{(20)}$	0	0	0	0	0
s_{12}	$0_{(20)}$	0	0	0	0	0
s_{13}	$\mathrm{O}_{(9)}$	1	15	0	0	0
s_{14}	$3(1)$	5.95	136	17	3	0
s_{15}	$0_{(20)}$	0	0	0	0	0
s_{16}	$0_{(20)}$	0	13	0	0	0
s_{17}	$0_{(20)}$	${ }^{0}$	13	0	0	0
s_{18}	$0_{(11)}$	0.45	36	3	0	0
s_{19}	$0_{(11)}$	1.2	25	3	0	0
s_{20}	$0_{(20)}$	0	0	0	0	0
Total	19			14	18	20
Medium instances						
Instance		HSA		Lewis I	Lewis II	Lewis III
name	min	ave	CPU(s)			
m_{1}	$0_{(20)}$	0	0	0	0	0
m_{2}	${ }_{0}{ }_{(20)}$	0	0	0	0	0
m_{3}	${ }_{0}^{0}(20)$	0	8	0	0	0
m_{4}	$\mathrm{O}_{(20)}$	0	3	0	0	0
m_{5}	$\mathrm{O}_{(20)}$	0	85	8	0	0
m_{6}	${ }^{0}(20)$	0	20	15	0	0
m_{7}	$1_{(1)}$	4.15	440	41	34	14
m_{8}	$0_{(20)}$	0	12	21	9	0
m_{9}	$0_{(1)}$	4.9	269	30	17	2
m_{10}	${ }_{0}^{0}(20)$	0	0	0	0	0
m_{11}	${ }_{0}^{0}(20)$	0	25	12	0	0
m_{12}	${ }_{0}{ }_{(20)}$	${ }_{0}^{0}$	54	0	0	0
m_{13}	$0_{(12)}$	0.5	172	23	3	0
m_{14}	${ }_{0}{ }_{(20)}$	${ }^{0}$	59	0	0	0
m_{15}	$0_{(19)}$	0.05	72	10	0	0
m_{16}	1 (2)	5.15	733	50	30	1
m_{17}	$0_{(20)}$	0	39	21	0	0
m_{18}	$0_{(2)}$	6.05	429	15	0	0
m_{19}	$0{ }^{(3)}$	5.45	511	51	0	0
m_{20}	2 (1)	10.6	457	15	0	3
Total	17			7	15	16
Large instances						
Instance		HSA		Lewis I	Lewis II	Lewis III
name	min	ave	CPU(s)			
b_{1}	$0_{(20)}$	0	0	0	0	0
b_{2}	$0_{(20)}$	0	283	0	0	0
b_{3}	$0_{(20)}$	0	447	0	0	0
b_{4}	${ }_{0}{ }_{(20)}$	0	406	32	30	8
b_{5}	${ }^{0}(6)$	1.1	743	31	24	30
b_{6}	5 (1)	8.45	893	90	71	77
b_{7}	$47_{(1)}$	58.3	966	150	145	150
b_{8}	${ }_{0}(20)$	${ }_{0}^{0} 0$	210	35	30	5
b_{9}	$0_{(19)}$	0.05	419	26	18	3
b_{10}	$0_{(6)}$	1.25	660	36	32 37	24
b_{11}	$0_{0}^{(14)}$	0.35	444	43	37 0	22
b_{12}	$0_{(20)}$	0	240	4	0	0
b_{13}	${ }_{0}{ }_{(20)}$	0	274	23	10	0
b_{14}	$\mathrm{O}_{(20)}$	0	271	8	0 98	0
b_{15}	$\mathrm{O}_{(20)}$	0	255	120	98	0
b_{16}	${ }^{0}(2)$	2.	755	120	100	19
b_{17}	76 (1)	89.9 62.6	998	260	243	163
b_{18}	53 109 (1)	62.6 127	764 998	199	173	164
b_{19} b_{20}	109 40 (1)	127 46.7	998 827	262	253	232 149
Total	14			3	5	7
The results represent the number of events in the artificial timeslots The number of times (out of 20 trials) that the HSA found the optimal solution is shown in subscript under the \min column.						

Also important to emphasize is that a zero cost found in zero seconds means that our initial solution generator could already find the feasible solution for the instance by using just 45 timeslots.

5. Conclusion

This paper presented a new Hybrid Simulated Annealing (HSA) for the University Course Timetabling Problem (UCTP). The method relaxes the hard constraint associated to the number of timeslots in the original problem and uses a penalty function to minimize the use of slots and reach a feasible solution. The method uses an improved Kempe Chain neighbourhood that allows a better diversification in the search for a feasible solution. Three sets of instances were used, divided according to their sizes. The HSA performance was compared against three different algorithms from Lewis et al. [6, 14], which are the current state of the art for the problem. The results indicate a comparable performance for the set of smaller instances; slightly better results for the medium-sized instances; and strongly better for the larger instances. Also worth mentioning is the robustness showed by the HSA, with the method repeatedly finding feasible solutions in the majority of the trials.

References

[1] S. Abdullah, E. Burke, and B. McCollum. An investigation of variable neighbourhood search for university course timetabling. In Proceedings of MISTA2005: The 2nd Multidisciplinary Conference on Scheduling: Theory and Applications, pages 413-427, New York, USA, 2005.
[2] S. Abdullah, E. Burke, and B. McCollum. A randomised iterative improvement algorithm with composite neighbourhood structures for university course timetabling. In Proceedings of MIC05: The 6th Metaheuristic International Conference, Vienna, Austria, 2005.
[3] V. Bardadym. Computer-aided school and university timetabling: The new wave. In E. Burke and P. Ross, editors, Proceedings of PATAT'95, volume 1153 of Lecture Notes in Computer Science, pages 22-45. Springer-Verlag, Berlin, 1995.
[4] E. Burke, A. Eckersley, B. McCollum, S. Petrovic, and R. Qu. Hybrid variable neighbourhood approaches to university exam timetabling. Technical Report NOTTCS-TR-2006-2, University of Nottingham, School of CSiT, 2006.
[5] E. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 176:177-192, 2007.
[6] Centre of Emergent Computing. http://www.emergentcom puting.org/timetabling/harderinstances.htm, 2007.
[7] M. Chiarandini, K. Socha, M. Birattari, and O. RossiDoria. An effective hybrid approach for the university course timetabling problem. Technical Report AIDA-03-05, TU Darmstadt, FG Intellektik, 2003.
[8] S. Deris, S. Omatu, and H. Ohta. Timetabling planning using the constraint-based reasoning. Computers \& Operations Research, 27:819-840, 2000.
[9] J. K. E.K. Burke and D. de Werra. Applications to timetabling. In J. Gross and J. Yellen, editors, Handbook of

Graph Theory, pages 445-474. Chapman Hall/CRC Press, 2004.
[10] M. Elmohamed, P. Coddington, and G. Fox. A comparison of annealing techniques for academic course scheduling. In E. Burke and M. Carter, editors, Proceedings of PATAT'97, volume 1408 of Lecture Notes in Computer Science, pages 92-114. Springer-Verlag, Berlin, 1997.
[11] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 4598:671-680, 1983.
[12] P. Kostuch. The university course timetabling problem with a three-phase approach. In E. Burke and M. Trick, editors, Proceedings of PATAT 2004, volume 3616 of Lecture Notes in Computer Science, pages 109-125. SpringerVerlag, Berlin, 2004.
[13] R. Lewis and B. Paechter. Finding feasible timetables using group based operators. IEEE Transactions on Evolutionary Computation, to appear.
[14] R. Lewis and B. Paechter. Application of the grouping genetic algorithm to university course timetabling. In G. Raidl and J. Gottlieb, editors, Proceedings of EvoCOP 2005, volume 3448 of Lecture Notes in Computer Science, pages 144153. Springer-Verlag, Berlin, 2005.
[15] L. Merlot, N. Boland, B. Hughes, and P. Stuckey. A hybrid algorithm for the examination timetabling problem. In E. Burke and P. De Causmaecker, editors, Proceedings of PATAT 2002, volume 2740 of Lecture Notes in Computer Science, pages 207-231. Springer-Verlag, Berlin, 2002.
[16] Metaheuristic Network. http://www.idsia.ch/files/ ttcomp2002, 2007.
[17] P. Ross, D. Corne, and H. Fang. Improving evolutionary timetabling with delta evaluation and direct mutation. Lecture Notes in Computer Science, 866:556-565, 1994.
[18] O. Rossi-Doria et al. A comparison of the performance of different metaheuristics on the timetabling problem. In E. Burke and P. De Causmaecker, editors, Proceedings of PATAT 2002, volume 2740 of Lecture Notes in Computer Science, pages 329-351. Springer-Verlag, Berlin, 2002.
[19] K. Socha, J. Knowles, and M. Sampels. A max-min ant system for the university course timetabling problem. In M. Dorigo et al., editor, Proceedings of ANTS 2002, volume 2463 of Lecture Notes in Computer Science, pages 1-13. Springer-Verlag, Berlin, 2002.
[20] V. Tam and D. Ting. Combining the min-conflicts and lookforward heuristics to effectively solve a set of hard university timetabling problems. In Proceedings of ICTAI'03: The 15th IEEE International Conference on Tools with Artificial Intelligence, page 492, Sacramento, USA, 2003.
[21] J. Thompson and K. Dowsland. General colling schedules for a simulated annealing based timetabling system. In E. Burke and P. Ross, editors, Proceedings of PATAT'95, volume 1153 of Lecture Notes in Computer Science, pages 345-363. Springer-Verlag, Berlin, 1995.
[22] J. Thompson and K. Dowsland. A robust simulated annealing based examination timetabling system. Computers \& Operations Research, 25:637-648, 1998.
[23] G. White and J. Zhang. Generating complete university timetables by combining tabu search with constraint logic. In E. Burke and M. Carter, editors, Proceedings of PATAT'97, volume 1408 of Lecture Notes in Computer Science, pages 187-200. Springer-Verlag, Berlin, 1997.

